
 SUBSCRIBE

B A C K G R O U N D

https://bits-chips.nl/linkout/57208
https://bits-chips.nl/
https://bits-chips.nl/subscribe
https://bits-chips.nl/wp-content/uploads/2020/09/Comma-VP.jpg


Comma interfaces open
the door to reliable
high-tech systems

O
Nieke Roos

yesterday

nce a research project initiated by ESI

(TNO) and Philips, the Comma

framework is developing into a mature product

for creating and managing software interfaces.

Now, Thales is also looking to use it to

streamline its software engineering, as are

Thermo Fisher Scienti�c and Kulicke & So�a.

“Comma is the place where you express

everything you want and from there, you

generate everything you need, like

documentation, monitoring, simulation,

visualization and, as of recently, test cases.”



“Our medical devices are growing bigger and bigger,” observes

Daan van der Munnik, software manager at Philips Healthcare in

Best. “We have to chop them up in smaller subsystems to keep

their development manageable, but also for validation purposes.

Up to a year ago, we validated a complete device in one go – a

huge e�ort. By chopping it up in smaller subsystems, we can

focus our validation e�orts on the parts of the system we actually

touch for a particular feature. We do need to show that when we

put everything together, it still does what it’s supposed to do. Both

the disassembling and reassembling call for good interface

management.”

Subsystems are also increasingly being farmed out to

subcontractors. “We’re really moving to a system-of-systems

development, where we make some parts ourselves and some

parts come from outside,” notes Van der Munnik. “For instance, in

one of our image-guided therapy systems, we have three types of

patient tables. One is developed by us, two are made by other

companies. From a user perspective, however, they all have to

appear to be an integral part of the system – the user experience,

for instance when moving or tilting, has to be exactly the same.

This means that, for our subcontractors, the interfaces need to be

clearly de�ned, both on a low technical level and a high

subsystem level.”



Last but certainly not least, good interface management is key for

system evolvability. Van der Munnik: “Our medical devices have

very long lifetimes. We need to ensure that, over their lifetime,

they’re expandable and suitable for form/�t/function

replacements.”

Comma

Comma (Component Modeling and Analysis) is an

ecosystem supporting model-based component

engineering. It’s a combination of domain-speci�c

languages (DSLs) in which the interface between a server

and its clients can be speci�ed by three main ingredients:

the interface signature, the allowed client-server

interactions and the time and data constraints. The

interface signature consists of groups of commands, signals

and asynchronous noti�cations. Commands are

synchronous: the caller is blocked until a reply is received,

whereas signals are asynchronous: they do not block the

caller and do not require a reply. State machines are used

to describe the allowed client-server interactions, such as

the allowed order of client calls and the allowed

noti�cations from the server in any state. Finally, Comma

enables the de�nition of constraints such as the allowed



An example Comma model.

response time, noti�cation periodicity and data

relationships between the parameters of subsequent calls.

Evolving interfaces

Fellow high-tech company Thales faces similar challenges.

“Traditionally, we developed, built and quali�ed our combat

management and radar systems, delivered them to the customer

and mostly touched them to replace obsolete components – to

avoid unnecessary risks, functional changes were rather limited

and implemented at long intervals,” explains Pepijn Noltes,

software architect at the Hengelo-based company. The last ten

years, however, the operational scene is changing more rapidly at

extended operational lifecycles, with customers increasingly



demanding new features. Thales is adapting to this need by

looking for ways to implement software updates more frequently,

including incremental enhancements.

 ADVERTORIAL 

Compiler Quali�cation, Certi�cation and ISO

26262

It may seem paradoxical that qualifying a tool for

use in a functional safety application cannot fall

to the tool provider. Read this short article from

Microchip to learn how to simplify the

development tool quali�cation process for your

functional safety requirements.

But that’s easier said than done. “For complex software-centric

systems like ours, it’s very expensive to change something,

integrate and test it – especially so in the military domain that

we’re in, where you may have to do live �ring trials to really

validate the system,” says Noltes. “Also, even the tiniest update

may cause an avalanche of changes. It then boils down to the

question: how well can you revise part of your system without

touching the rest?”

Noltes has learned that to be able to continuously update a

complex system, you need to keep the changes local and to do

that, you need to focus on the interfacing. “We tend to touch the

https://bits-chips.nl/linkout/57295
https://bits-chips.nl/linkout/57295
https://bits-chips.nl/advertorial/compiler-qualification-certification-and-iso-26262/


interfaces as little as possible because they’re expensive to

change. Bigger problems that you can’t work around will

eventually get �xed, but small issues will remain, as a result of

which the code quality will slowly deteriorate. We’re now looking

at evolving interfaces to facilitate the need for change.”

Single source of truth

Enter Comma (Component Modeling and Analysis), an ecosystem

supporting model-based component engineering. “It started about

six years ago as a research project between ESI and Philips,”

recalls Jozef Hooman, senior scientist at ESI, the high-tech

embedded systems joint innovation center of the Netherlands

Organization for Applied Scienti�c Research (TNO). “We began

using domain-speci�c languages for all kinds of purposes,

generating code, analysis tools and much more. While doing this,

we noticed that a lot of issues Philips had with its software were

due to interface problems and, gradually, the insight came to us

that these DSLs were especially useful for describing the

interfaces. So, in small steps, we moved from general-purpose

languages to a domain-speci�c language, Comma, which we

reused for many di�erent interfaces.”

Although a research project, the development of Comma wasn’t

driven by research considerations, Hooman points out. “We really



Thales is looking to use Comma to make the interfaces in its software-centric systems evolvable. Credit: Thales

looked at what the engineers at Philips needed and adapted the

language accordingly. We started with a state machine describing

the interface protocol, ie the interaction between client and



server. Based on user feedback, we modi�ed it to make it more

user friendly and include things like timing and data constraints.

The patient table, for instance, is very sensitive to both timing and

data – when the controlling joystick stops, the table should stop

too within a certain amount of time and without moving too much.”

Step by step, Comma developed into what it is now: “the single

source of truth,” as Hooman calls it. “This DSL is the place where

you express everything you want and from there, you generate

everything you need, like documentation, monitoring, simulation,

visualization and, as of recently, test cases. Monitoring, especially,

is very important. You can use that to see if your implementation

satis�es the speci�cation by running the system, collecting traces

and check whether the execution conforms to the interface. If an

interface changes, you can re-generate everything, and if your

developers, or your third-party suppliers for that matter, introduce

a software update, you can check that for conformity – all with the

push of a button, continuously, as an integral part of your test

process.”

Forming an ecosystem

At Philips, Comma is now �rmly embedded in the company’s

software engineering practice. Van der Munnik: “We use the DSL

to write the interface specs and generate documentation and



code. As part of our continuous integration pipeline, we check

interface conformance against the Comma specs when executing

our automated test scenarios. We’ve created a maturity matrix,

which sets o� our interfaces against these development stages,

and we’re now raising the bar for all of them. Thanks to the

unambiguous de�nition of interfaces and the subsequent

automatic validation, Comma brings us a huge amount of business

value as we �nd interface issues early, well before integration.”

Two years ago, Thales started the Dynamics project to research

dynamic system updates in collaboration with ESI. “We’re looking

into evolvable interfaces and so-called adapters to keep the old

and the new working together,” clari�es Noltes. “So when you

introduce a client with an updated interface, you also generate an

adapter that connects it to your existing server and provably

ensures that nothing breaks down. ESI did a small technology

survey on interface speci�cations and Comma came out as the

solution that best �ts our needs. Although Dynamics is still

ongoing research, Comma is already useable out of the box and

we’re busy to include it in our component development

framework. By doing more at design time, we hope to eliminate

much of the risk in projects.”

Slowly but surely, Comma is conquering the Dutch high tech.

“We’re also working with Thermo Fisher Scienti�c in Eindhoven,



for instance,” illustrates ESI’s Hooman. “For some critical

interfaces, a model has been made and a monitor has been built

into the nightly smoke tests, which automatically checks the log

�les. In the morning, they can see what properties have failed.

And Kulicke & So�a, also from Eindhoven, is looking into making a

generator for its middleware layer.” Senior research fellow Benny

Akesson, ESI’s liaison to the Dynamics project, adds: “It’s

interesting to see this ecosystem starting to form.”

Backward compatible

According to Akesson, there are basically three ways of using

Comma. “This monitoring facility has already been there for years.

If you have an interface and all the traces you run through the

monitor are compliant, you know you’re in a good place. When

you update your interface, you can automatically generate a new

monitor and feed it the same traces to see whether they still work.

As you don’t have to do a complete impact analysis of the change

manually, that saves you time. The problem with this is that you’re

now no better than your traces. You need to have traces that are

representative of all the desired system behavior.”

Together with its industrial partners, ESI is working on a solution

based on so-called Petri nets, a formal method using state-

transition models to study concurrent and distributed systems. “By



Thanks to Comma, it’s easier for Philips to enhance its medical systems. Credit: Philips

generating Petri nets for an interface, you can see the possible

state transitions that can occur in the protocol,” explains Akesson.

“You can then produce tests that cover those possible transitions

and thus systematically explore the state space.” Philips is now

using Petri nets to do exactly that: to create test cases from the

Comma speci�cations.



A third approach is to play by a slightly more restricted playbook,

continues Akesson. “This is what we’re doing in the Dynamics

project with Thales. By not using certain constructions in Comma,

and using Petri nets in a di�erent way, it’s possible to build tooling

that can statically tell you whether your new interface is backward

compatible and if not, automatically generate an adapter – if one

exists. We’re now lifting this from a proof-of-concept command-

line tool into the Eclipse-based Comma environment, providing

immediate developer feedback on why a change is or is not

backward compatible and whether an adapter can be generated.”

Open source

This static checking is high up on Philips’ wish list as well, divulges

Van der Munnik. “The main bene�t for us at the moment is still the

dynamic conformance checking while running the test cases, but

maybe some of that can also be done statically. Furthermore, we

want to extend the Comma framework with the ability to create

smart stubs and simulators for clients and servers. And we’re

looking into reverse-engineering interfaces by automatically

constructing Comma models from execution traces – but this is

still more in the research phase.” At Thales, Noltes is hoping to get

Comma out of that research phase and into the modeling practice.



Related

“As part of our work with Philips and Thermo Fisher Scienti�c,

we’re extending Comma with the concept of components, ie

objects with multiple interfaces,” states Hooman. “These

interfaces are often inter-related, which means that if you do an

action on one, the state of another changes as well. We’re

developing a component that lets you express the relations and

possibly the timing constraints between the interfaces. We’re also

looking into testing multiple interfaces.”

To further the spread, the partners are working on open-sourcing

the framework. Hooman: “We’re de�ning a kind of Comma core in

the form of an Eclipse plugin, which others can extend, for

instance with their own generators.” Van der Munnik underlines

the importance of this development: “It adds to the maturity of

Comma. What started as a research project is now a product that

can actually be used by developers, in terms of UI, speed, ease of

installation and so on. By making it open source, we’re hoping

that others will contribute back into Comma, thereby extending

and improving the framework even further.”


